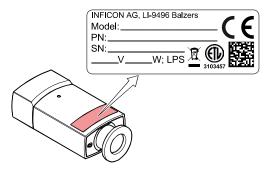


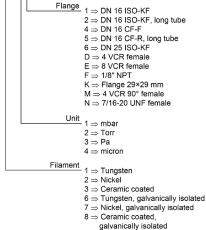
Pirani Capacitance Diaphragm Gauge PCG550 PCG552 PCG554


CE

Operating Manual Incl. EU Declaration of Conformity

Product Identification

In all communications with INFICON, please specify the information given on the product nameplate. For convenient reference copy that information into the space provided below.



Validity

This document applies to products of the PCG55x series.

Part numbers of standard products are indicated below. OEM products have other part numbers and different parameter settings (e.g. factory setting of setpoint) as defined in the corresponding ordering information.

3PCx-0xx-xxxx Measurement 0 ⇒ 0.61 ... 10.23 V signal 1 ⇒ 1.2 … 8.68 V $2 \Rightarrow 0.375 = 5.659 V$ 3 ⇒ 1.57 ... 9.05 V Interface $0 \Rightarrow None (analoge)$ 1 ⇒ DeviceNet 2 ⇒ Profibus 8 ⇒ EtherCAT *) A → Profinet $G \Rightarrow EtherCAT **)$ Receptacle $0 \Rightarrow FCC$ $1 \Rightarrow$ D-sub. 9-pin 2 ⇒ D-sub HD, 15-pin $4 \Rightarrow$ D-sub HD, 15-pin, RS485 INF Display $0 \Rightarrow None$ Switching function $1 \Rightarrow$ Display $2 \Rightarrow 2$ switching functions ***) $3 \Rightarrow ATM sensor \&$ 2 switching functions ***) 4 ⇒ Display & 2 switching functions ***) 5 ⇒ Display & ATM sensor & 2 switching functions ***) $6 \Rightarrow 2$ switching functions ****) 7 ⇒ ATM sensor & 2 switching functions ****) *) ***) ETG.5003.2080 S (R) V1.0.0 ($\rightarrow \square$ [7]) Solid state relays

) ETG.5003.2080 S (R) V1.3.0 (→ □ [8]) **) Mechanical relays

Significant differences between the two ETG standards:

- PDO structure,
- error and warning bits.

The part number (PN) can be taken from the product nameplate. If not indicated otherwise in the legends, the illustrations in this document correspond to gauges with the DN 16 ISO-KF vacuum connection and display. They apply to gauges with other vacuum connections by analogy.

We reserve the right to make technical changes without prior notice.

Intended Use

The Pirani Capacitance Diaphragm Gauge PCG55x has been designed for vacuum measurement of gases in the pressure range of 5×10^{-5} ... 1500 mbar.

It must not be used for measuring flammable or combustible gases which react in air.

The gauge is intended for operation in connection with an INFICON Vacuum Gauge Controller $^{1)}$ of the VCG40x and VGC50x series or with another suitable controller.

Functional Principle

The PCG gauge is a combination gauge consisting of a Pirani sensor and a diaphragm capacitive sensor. Both sensors are constantly active.

At low pressures, only the signal of the Pirani sensor is used for pressure measurement; at high pressures, only the signal of the diaphragm capacitive sensor. To determine the output signal in the intermediate range, both signals are used proportionally to the pressure.

Trademark

VCR[®] Swagelok Marketing Co.

Patents

EP 0689669 B1, 0689670 B1, 0658755 B1 US Patente 5608168, 4031997, 5583297

¹⁾ Gauges with measurement signal 0.61 ... 10.23 V (dc) only.

Scope of Delivery

- 1× gauge 1× pin for adjusting settings via buttons
- 1× Operating Manual

Contents

Product Identification Validity Intended Use Functional Principle Trademark Patents Scope of Delivery	2 3 5 5 5 5 6
 Safety Symbols Used Personnel Qualifications General Safety Instructions Liability and Warranty 	9 9 10 10
2 Technical Data 2.1 Output Signal vs. Pressure 2.2 Gas Type Dependence	11 21 26
 3 Installation 3.1 Vacuum Connection 3.2 Power Connection 3.2.1 FCC 68, 8-pin Connector 3.2.2 D-sub, 9-pin Connector 3.2.3 D-sub HD, 15-pin Connector 3.2.4 D-sub HD, 15-pin, RS485 INF Connector 3.2.5 DeviceNet Connector 3.2.6 Profibus Connector 3.2.7 EtherCAT Connector 3.2.8 Profinet Connector 	27 28 31 32 33 34 35 36 37 38 39
 4 Operation 4.1 Status Indication and Displays 4.2 Gas Type Dependence 4.3 Switching Functions SP1, SP2 4.4 ATM Setpoint 4.5 Diagnostic Port (RS232C Interface) 4.6 DeviceNet Operation 4.7 Profibus Operation 4.8 EtherCAT Operation 4.9 Profinet Operation 	40 40 44 51 53 54 57 58 59

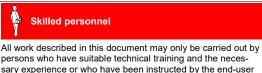
5 Deinstallation	60
 6 Maintenance, Repair 6.1 Adjusting the Gauge 6.2 Adjusting the Atmospheric Pressure Sensor 6.3 Troubleshooting 6.4 Replacing the Sensor 	62 64 64 67
7 Returning the Product	68
8 Disposal	69
9 Accessories	70
10 Spare Parts	71
Further Information	74
ETL Certification	76
EU Declaration of Conformity	77
UKCA Declaration of Conformity	78

For cross-references within this document, the symbol ($\rightarrow \blacksquare XY$) is used, for cross-references to further documents, listed under "Further Information", the symbol ($\rightarrow \blacksquare [Z]$).

1 Safety

1.1 Symbols Used

Information on preventing any kind of physical injury.


Information on preventing extensive equipment and environmental damage.

Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

<...> Labeling

1.2 Personnel Qualifications

of the product.

1.3 General Safety Instructions

 Adhere to the applicable regulations and take the necessary precautions for the process media used.
 Consider possible reactions with the product materials.

Consider possible reactions (e.g. explosion) of the process media due to the heat generated by the product.

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.

1.4 Liability and Warranty

INFICON assumes no liability and the warranty becomes null and void if the end-user or third parties

- · disregard the information in this document
- · use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the product documentation.

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination or wear and tear, as well as expendable parts (e.g. filament) are not covered by the warranty.

Technical Data

2

For further technical data for gauges with serial interface $\rightarrow \square$ [4], [5], [6], [7], [8], [9].

Measurement range	5×10⁻⁵ … 1500 mbar
Measurement principle	
10 mbar … 1500 mbar	diaphragm capacitive sensor
1 … 10 mbar	crossover range
5×10 ⁻⁵ … 1 mbar	thermal conductance acc. to Pirani
Accuracy (N ₂)	
5×10 ⁻⁴ 1×10 ⁻³ mbar	±50% of reading
1×10 ⁻³ … 100 mbar	±15% of reading
100 … 950 mbar	±5% of reading
950 … 1050 mbar	±2.5% of reading
Repeatability (N ₂)	
1×10 ⁻³ 1100 mbar	±2% of reading

Output signal (measurement signal)

Voltage range 3PCx-0xx-xxx 0	0 +10.23 V
51 04-044-4440	0 + 10.23 V
3PCx-0xx-xxx1	0 +8.68 V
3PCx-0xx-xxx2	0 +5.659 V
3PCx-0xx-xxx3	0 +9.05 V
Measurement range	
3PCx-0xx-xxx0	+0.61 +10.23 V
3PCx-0xx-xxx1	+1.2 +8.68 V
3PCx-0xx-xxx2	+0.375 +5.659 V
3PCx-0xx-xxx3	+1.57 +9.05 V
Error signal	0 V (default)

Voltage vs. pressure 3PCx-0xx-xxx0 3PCx-0xx-xxx1 3PCx-0xx-xxx3 3PCx-0xx-xxx2	 1.286 V/decade, logarithmic 1 V/decade, logarithmic 1 V/decade, logarithmic →
Output impedance	$2 \times 4.7 \Omega$, short circuit-proof
Load impedance	>10 kΩ
Response time	<30 ms
Gauge identification FCC 68 (+0.61 +10.23 V)	71.5 kΩ
HV adjustment	at <10 ⁻⁵ mbar
ATM adjustment	at >100 mbar
Solid state relays	switching functions SP1, SP2, ATM
Setting range (N ₂)	5.0×10⁻⁵ … 1500 mbar
Hysteresis ²⁾	10% of threshold
Switching characteristics 2)	Low Trip Point
Contact rating	<30 V (ac) / (dc), ≤0.3 A resistive
closed	LED lit solid
open	LED off
Switching time	<30 ms

²⁾ The hysteresis and the switching characteristics can be programmed via the serial interface or the diagnostic port.

Mechanical relays	switching functions SP1, SP2, ATM
Setting range (N ₂)	5.0×10⁻⁵ … 1500 mbar
Hysteresis 2)	10% of threshold
Switching characteristics 2)	Low Trip Point
Туре	1 floating contact (NO) per switching function
Contact rating	<30 V (ac) / (dc), ≤1 A resistive
closed	LED lit solid
open	LED off
Switching time	<30 ms
Diagnostic port	Jack connector 2.5 mm, 3-pin

Supply

STOP DANGE	ER
plies, instruments to the requirement low voltage (PEL	only be connected to power sup- s, or control devices that conform hts of a grounded protective extra- V) and limited power source 'he connection to the gauge has to
Supply voltage	Class 2 / LPS
at the gauge	+15 +30 V (dc)
Ripple	≤1 V _{pp}
Power consumption	
without fieldbus	≤2.5 W
DeviceNet, Profibus	≤3 W
EtherCAT, Profinet	≤4.5 W

1 AT

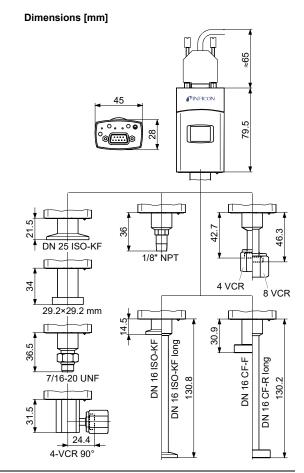
Fuse to be connected ³⁾

³⁾ INFICON controllers fulfill this requirement.

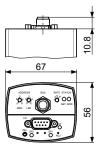
Electrical connection 3PCx-0xx-x0xx	FCC 68
3PCx-0xx-x1xx	D-sub 9-pin, male
3PCx-0xx-x2xx	D-sub HD 15-pin, male
3PCx-0xx-x4xx	D-sub HD 15-pin, RS485 INF, male
Sensor cable	shielded 0.14 mm²/conductor
Cable length	≤100 m
RS232C operation	≤30 m
Grounding concept	\rightarrow "Power Connection"
Vacuum connection to	
signal common	connected via 10 kΩ
RS232C / RS485 interface	
Transmission rate	57600 baud (default)
Data format	binary
	8 data bits
	one stop bit
	no parity bit no handshake
	\rightarrow "Power Connection"
For further information on the RS2	
\rightarrow \square [4].	

DeviceNet interface		
Specification, data format, communication protocol	→ 🛄 [10]	
Interface, physical	→ III [10] CAN bus	
Data rate (adjustable via <rate> switch)</rate>	125 kBaud 250 kBaud (default) 500 kBaud (default) $(125 kBaud, 250 kBaud, 500 kBaud programmable viaDeviceNet, \rightarrow \square [5])$	
Node address (MAC ID) (Adjustable via <address>, <msd>, <lsd> switches)</lsd></msd></address>	0 63dec (63dec default) <P> (0 63 programmable via DeviceNet, $\rightarrow \square$ [5])	
DeviceNet connector	Micro-Style, 5-pin, male	
Cable	shielded, special DeviceNet cable, 5 conductors $\rightarrow \mathbb{B}$ 36, $\rightarrow \mathbb{Q}$ [11]	
Cable length, system wiring	acc. to DeviceNet specifications, $\rightarrow \square$ [10], [11]	
For further information on the DeviceNet interface \rightarrow [5]		
EtherCAT interface		
Specification, data format, communication protocol		
3PCx-0xx-xxGx	→ 🛄 [16], [17]	
3PCx-0xx-xx 8 x	→ 🛄 [14], [15]	
Data rate	100 Mbps	
Note address	explicit device identification	
EtherCAT connector	2×RJ45, 8-pin, socket input and output	
Cable	8-pin, shielded, Ethernet	
	Patch Cable (CAT5e quality or higher)	
Cable length		

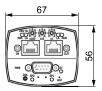
Profibus interface	
Specification, data format,	
communication protocol	→ 🕮 [12]
Interface, physical	RS485
Data rate	≤12 Mbaud (→ 🛄 [6])
Node address Local (Adjustable via hexadecimal <address>, <msd>, <lsd> switches)</lsd></msd></address>	00 7D _{hex} (0 125 _{dec})
Default setting	01 _{hex}
Via Profibus (hexadecimal <address> switches set to >7D_{hex} (>125_{dec})</address>	00 7D _{hex} (0 125 _{dec})
Profibus connection	D-sub, 9-pin, female
Cable	shielded, special Profibus cable, $\rightarrow \mathbb{B}$ 37, $\rightarrow \mathbb{Q}$ [13]
Cable length, system wiring	according to Profibus specifications, $\rightarrow \square$ [12], [13]
For further information on the Profil	ous interface $\rightarrow \square$ [6]
Profinet interface	
Specification, data format, communication protocol	→ 🛄 [14]
Data rate	100 Mbps
Note address	explicit device identification
Profinet connector	2×RJ45, 8-pin, socket input and output
Cable	8-pin, shielded, Ethernet Patch Cable (CAT5e quality or higher)
Cable length	≤100 m
For further information on the Profir	net interface $\rightarrow \square$ [9].

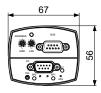


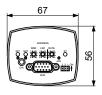
Materials exposed to vacuum Vacuum connection Filament	stainless steel 1.4435
3PC1 / 6-0xx-xxxx	W
3PC2 / 7-0xx-xxxx	Ni
3PC3 / 8-0xx-xxxx	ceramic coated
Feedthrough	glass
Orifice 4)	stainless steel
Diaphragm	ceramic
Further materials	Ni, NiFe, stainless steel
	1.4301, SnAg
Internal volume	
DN 16 ISO-KF	4.7 cm ³
DN 16 ISO-KF, long tube	14.5 cm ³
DN 16 CF-F	8 cm ³
DN 16 CF-R, long tube	14 cm ³
DN 25 ISO-KF	5.5 cm ³
4 VCR [®] female	5.5 cm ³
8 VCR [®] female	7 cm ³
1/8" NPT	5.2 cm ³
Flange 29×29 mm	4.9 cm ³
4 VCR [®] 90°, female	7.9 cm ³
7/16-20 UNF	5.2 cm ³
Permissible pressure (absolute)	≤5 bar
Bursting pressure (absolute)	10 bar

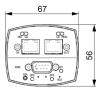

⁴⁾ Only versions DN 16 ISO-KF and DN 16 CF-F.

Operation $\pm 10 \ ^{\circ}C \dots \pm 50 \ ^{\circ}C$ Vacuum connection 5) $\leq 80 \ ^{\circ}C$ long tube 5) $\leq 250 \ ^{\circ}C$ Filament $<160 \ ^{\circ}C$ Storage $-20 \ ^{\circ}C \dots \pm 65 \ ^{\circ}C$ Relative humidityYear's meanYear's mean $\leq 65\%$ (no condensation)During 60 days $\leq 85\%$ (no condensation)Mounting orientationanyUseindoors only, altitude up to 2000 m NNPollution degree2Degree of protectionIP 40Weight without fieldbus interface115 g130 g	Permissible temperatures	
long tube ⁵) ≤250 °C Filament <160 °C	Operation	+10 °C +50 °C
Filament <160 °C	radaan oonnoonon	
Storage -20 °C +65 °C Relative humidity Year's mean Year's mean ≤65% (no condensation) During 60 days ≤85% (no condensation) Mounting orientation any Use indoors only, altitude up to 2000 m NN Pollution degree 2 Degree of protection IP 40	0	
Relative humidity ≤65% (no condensation) During 60 days ≤85% (no condensation) Mounting orientation any Use indoors only, altitude up to 2000 m NN Pollution degree 2 Degree of protection IP 40 Weight IP 40	-	
Year's mean ≤65% (no condensation) During 60 days ≤85% (no condensation) Mounting orientation any Use indoors only, altitude up to 2000 m NN Pollution degree 2 Degree of protection IP 40 Weight IP 40	Storage	–20 °C +65 °C
During 60 days <85% (no condensation)	Relative humidity	
Mounting orientation any Use indoors only, altitude up to 2000 m NN Pollution degree 2 Degree of protection IP 40 Weight		
Use indoors only, altitude up to 2000 m NN Pollution degree 2 Degree of protection IP 40 Weight	During 60 days	≤85% (no condensation)
Pollution degree 2 Degree of protection IP 40	Mounting orientation	any
Degree of protection IP 40 Weight IP 40	Use	
Weight	Pollution degree	2
0	Degree of protection	IP 40
0	Weight	
110 g 100 g	0	115 g 130 g
with fieldbus interface 230 g 250 g		

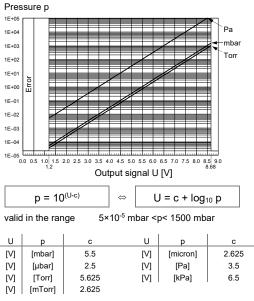

⁵⁾ For horizontal mounting orientation only. During bakeout, measurement range, accuracy, and repeatability may deviate from specifications.


DeviceNet


EtherCAT


Profibus

RS485


Profinet

2.1 Output Signal vs. Pressure

Pressure p 1E+06 1E+05 Pa 1E+04 mbar 1E+03 Torr 1E+02 Error 1E+01 1E+00 1E-01 1E-02 1E-03 1E-04 1E-05 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 Output signal U [V] $p = 10^{0.778(U-c)}$ $U = c + 1.286 \log_{10} p$ ⇔ 5×10⁻⁵ mbar <p< 1500 mbar valid in the range U U р с р с [V] [mbar] 6.143 [V] [micron] 2.448 [µbar] 2.287 [V] [Pa] 3.572 [V] [V] [Torr] 6.304 [V] [kPa] 7.429 [mTorr] 2.448 [V] where pressure р U output signal c constant (pressure unit dependent)

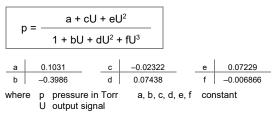
Measurement range 0.61 ... 10.23 V

Measurement range 1.2 ... 8.68 V

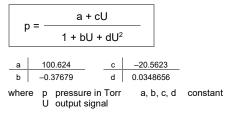
where p pressure

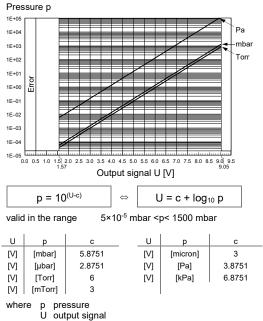
U output signal

c constant (pressure unit dependent)


Measurement range 0.375 ... 5.659 V

Signal U		Pressure p	
[V]	[mbar]	[Pa]	[Torr]
0.375	<5×10⁻⁵	<6.65×10 ⁻³	<5×10 ⁻⁵
0.376	0.000133322	0.013332237	0.0001
0.377	0.000266645	0.026664474	0.0002
0.379	0.000666612	0.066661184	0.0005
0.384	0.001333224	0.133322368	0.0010
0.392	0.002666447	0.266644736	0.0020
0.417	0.006666118	0.66661184	0.0050
0.455	0.013332237	1.33322368	0.0100
0.523	0.026664474	2.66644736	0.0200
0.682	0.066661184	6.6661184	0.0500
0.876	0.133322368	13.3322368	0.1000
1.155	0.266644736	26.6644736	0.2000
1.683	0.66661184	66.661184	0.5000
2.217	1.33322368	133.322368	1.0000
2.842	2.66644736	266.644736	2.0000
3.675	6.6661184	666.61184	5.0000
4.206	13.3322368	1333.22368	10.0000
4.577	26.6644736	2666.44736	20.0000
4.846	66.661184	6666.1184	50.0000
4.945	133.322368	13332.2368	100.0000
5.019	266.644736	26664.4736	200.0000
5.111	399.967104	39996.7104	300.0000
5.224	533.289472	53328.9472	400.0000
5.329	666.61184	66661.184	500.0000
5.419	799.934208	79993.4208	600.0000
5.495	933.256576	93325.6576	700.0000
5.534	1013.249997	101324.9997	760.0000
5.558	1066.578944	106657.8944	800.0000
5.614	1199.901312	119990.1312	900.0000
5.659	1333.22368	133322.368	1000.0000


Valid in the range 0.375 ... 2.842 V


а		-0.	02585		с	0.04563	_	е	-0.04158
b		0.03767		d	0.1151		f	0.008737	
wher	е		p pressure in Torr U output signal			a, b, c, d,	e, f	cor	istant

Valid in the range 2.842 ... 4.945 V

Valid in the range 4.945... 5.659 V

Measurement range 1.57 ... 9.05 V

c constant (pressure unit dependent)

2.2 Gas Type Dependence

p [mbar] 4 2 ₩ 10³ 6 4 Capacitive Pirani Crossover H diaphragm range sensor sensor 2 ì 10² 4 2 10 Ħ H 4 2 100 Ħ Ħ Ħ 4 H 2 - Air, O₂, CO, N₂ 10 -----## ----- He 4 --- Ar 2 Т 10 6 4 2 10 ŧ 10-10-4 2 4 6 10-3 2 4 6 10-2 2 4 6 10-1 2 4 6 10⁰ 2 4 6 101 2 4 6 102 2 4 6 10³ 2 p_{eff} [mbar]

Indicated pressure (gauge calibrated for air)

Calibration factors

valid for Pirani pressure range below 1 mbar

	$p_{eff} = C \times in$		
Gas type	Calibration factor C	Gas type	Calibration factor C
He	0.8	H ₂	0.5
Ne	1.4	air, O ₂ , CO, N ₂	1.0
Ar	1.7	CO ₂	0.9
Kr	2.4	water vapor	0.5
Xe	3.0	Freon 12	0.7

n – C u indiantad ana aver

Installation

3

Fragile components

The ceramic sensor may be damaged by impacts. Do not drop the product and prevent shocks and impacts.

STOP DANGER

Leaking process media

High-intensity mechanical, chemical or thermal impacts can cause leaks in the measuring sensor. Process media can thus leak and possibly cause hazards, if overpressure is in the vacuum system.

- Avoid high-intensity mechanical, chemical or thermal impacts and overpressure in the vacuum system.
- Take appropriate measures (e.g. shut off gas supply, extraction, leak test) to avoid hazards or damage due to leaking process media.

3.1 Vacuum Connection

TOP DANGER

Overpressure in the vacuum system >1 bar Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.

Do not open any clamps while the vacuum system is pressurized. Use the type clamps which are suited to overpressure.

STOP DANGER
Overpressure in the vacuum system >2.5 bar KF flange connections with elastomer seals (e.g. O-rings) cannot withstand such pressures. Process media can thus leak and possibly damage your health.
Use O-rings provided with an outer centering ring.

STOP DANGER

Protective ground

Products that are not correctly connected to ground can be extremely hazardous in the event of a fault.

Electrically connect the gauge to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:

- CF, NPT, UNF and VCR flanges fulfill this requirement.
- For gauges with a KF flange, use a conductive metallic clamping ring.
- For gauges with a ½" tube and a 29×29 mm flange, take appropriate measures to fulfill this requirement.

!\	Cautior

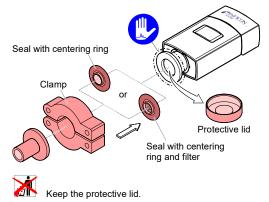
Vacuum component

Dirt and damages impair the function of the vacuum component.

When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Caution

Dirt sensitive area


Touching the product or parts thereof with bare hands increases the desorption rate.

Always wear clean, lint-free gloves and use clean tools when working in this area.

Mount the gauge so that no vibrations occur. The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber preferably choose a horizontal to upright position and consider using a seal with centering ring and filter. If adjustment should be possible after the gauge has been installed, be sure to install it so that the buttons can be accessed with a pin.

Remove the protective lid and connect the product to the vacuum system.

3.2 Power Connection

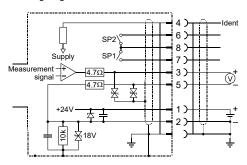
F

Make sure the vacuum connection is properly made (\rightarrow \cong 27).

``					
OP	D,	ΛN	١G	-	D
	-				L.

The gauge may only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded protective extralow voltage (PELV) and limited power source (LPS), Class 2. The connection to the gauge has to be fused. $^{\rm 6)}$

Ground loops, differences of potential, or EMC problems may affect the measurement signal. For optimum signal quality, please do observe the following notes:


- Connect the cable shield to ground on one side via the connector housing. Do not connect the other side of the shield.
- Connect the supply common with protective ground directly at the power supply.
- Use differential measurement input (signal common and supply common conducted separately).
- Potential difference between supply common and housing ≤18 V (overvoltage protection).

⁶⁾ INFICON controllers fulfill these requirements.

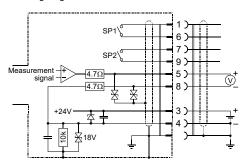
3.2.1 FCC 68, 8-pin Connector

If no sensor cable is available, make one according to the following diagram. Connect the sensor cable.

Electrical connection

- Pin 1 Supply
- Pin 2 Supply common, GND
- Pin 3 Measurement signal or thresholds SP1, SP2
- Pin 4 Gauge identification
- Pin 5 Signal common
- Pin 6, 8 Relay SP2 Common closing contact (com) Pin 7, 8 Relay SP1

Common closing contact (com)



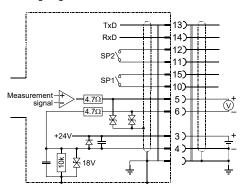
FCC 68 8-pin connector

3.2.2 D-sub, 9-pin Connector

If no sensor cable is available, make one according to the following diagram. Connect the sensor cable.

Electrical connection

- Pin 1 Relay SP1, closing contact
- Pin 2 n.c.
- Pin 3 Supply
- Pin 4 Supply common, GND
- Pin 5 Measurement signal or thresholds SP1, SP2
- Pin 6 Relay SP1 Common contact (com)
- Pin 7 Relay SP2 Common contact (com)
- Pin 8 Signal common
- Pin 9 Relay SP2, closing contact



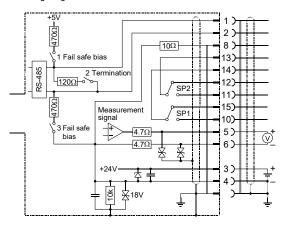
D-sub 9-pin female soldering side

3.2.3 D-sub HD, 15-pin Connector

If no sensor cable is available, make one according to the following diagram. Connect the sensor cable.

Electrical connection

Pin 1, 2	n.c.
Pin 3	Supply
Pin 4	Supply common, GND
Pin 5	Measurement signal
Pin 6	Signal common
Pin 7, 8, 9	n.c.
Pin 10	Relay SP1 (NO)
Pin 11	Relay SP2 (NO)
Pin 12	Relay SP2
	Common contact (com)
Pin 13	RS232, TxD
Pin 14	RS232, RxD
Pin 15	Relay SP1
	Common contact (com)



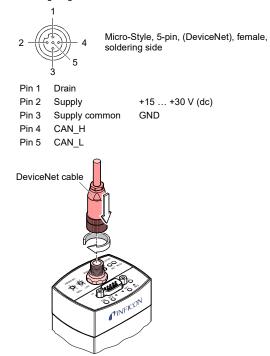
D-sub HD 15-pin female soldering side

3.2.4 D-sub HD, 15-pin, RS485 INF Connector

If no sensor cable is available, make one according to the following diagram. Connect the sensor cable.

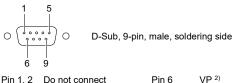
Electrical connection

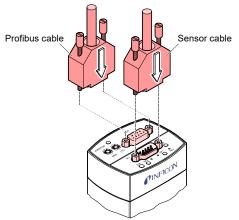
- Pin 1 RS485 B+
- Pin 2 RS485 A-
- Pin 3 Supply
- Pin 4 Supply common, GND
- Pin 5 Measurement signal
- Pin 6 Signal common
- Pin 7 Reserved
- Pin 8 RS485. GND
- Pin 9 Reserved
- Pin 10 Relay SP1 (NO)
- Pin 11 Relay SP2 (NO)
- Pin 12 Relay SP2, common contact (com)
- Pin 13 Relay SP2 (NC)
- Pin 14 Relay SP1 (NC)
- Pin 15 Relay SP1, common contact (com)



D-sub HD 15-pin female soldering side

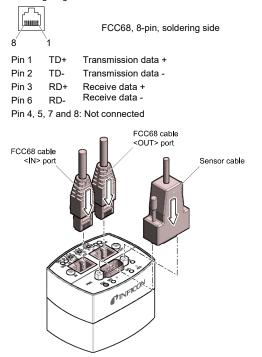
3.2.5 DeviceNet Connector


If no DeviceNet cable is available, make one according to the following diagram. Connect the DeviceNet cable.



3.2.6 Profibus Connector

If no Profibus cable is available, make one according to the following diagram. Connect the Profibus cable.


- Pin 3 RxD/TxD-P Pin
- Pin 4 CNTR-P ¹⁾ Pin 5 DGND ²⁾
- Pin 7, 9Not connectedPin 8RxD/TxD-N
- ¹⁾ Only to be connected if an *optical link* module is used.
- ²⁾ Only required as line termination for devices at both ends of bus cable (→ □□ [13]).

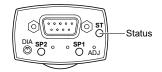
3.2.7 EtherCAT Connector


If no EtherCAT cables are available, make them according to the following diagram. Connect the EtherCAT cables.

3.2.8 Profinet Connector

If no Profinet cables are available, make them according to the following diagram. Connect the Profinet cables.

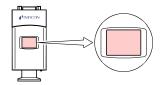
4 Operation


When the supply voltage is applied, the measurement signal is available at the connector (\rightarrow "Power Connection").

Allow a stabilization period of at least 10 minutes. It is advisable to operate the gauge continuously, irrespective of the pressure.

The gauge is factory calibrated. Due to long time operation or contamination, a zero drift could occur. Periodically check the zero and adjust it if necessary. In addition, we recommend to adjust the zero and ATM after each reinstallation (adjusting the gauge $\rightarrow \cong 62$).

4.1 Status Indication and Displays


Light-emitting diodes (LEDs)

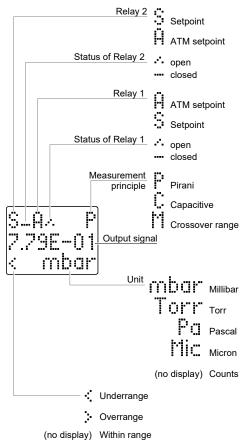
LED	State	Meaning
<st></st>	off	no supply voltage
	lit green	measurement mode
	lit solid or is blinking red	error ($\rightarrow \blacksquare 64$)
<sp1></sp1>	lit green	Relay SP 1 closed
	off	Relay SP 1 open
<sp2></sp2>	lit green	Relay SP 2 closed
	off	Relay SP 2 open

Liquid crystal display (LCD)

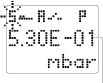
LCD	Meaning
off	no supply voltage
lit green	measurement / parameter mode
lit red	error

P

The display can be rotated by 180 $^\circ$ via the diagnostic port.

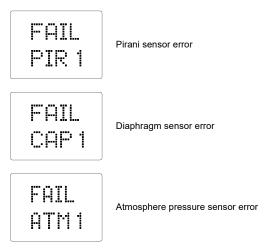

Put the gauge into operation

When the supply voltage is applied the software version is briefly displayed.

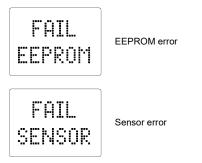

NFICON

Measurement mode

Parameter mode



Threshold -


Switching functions <S>

When the <SP1> or <SP2> button is pushed, the corresponding threshold is displayed and the corresponding relay flashes.

Error display (trouble shooting $\rightarrow B 64$)

4.2 Gas Type Dependence

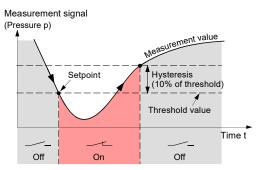
Pressure range	Measurement principle	Gas type dependence
10 1500 mbar	diaphragm capacitive sensor	independent of gas type, no correction required
1 10 mbar	diaphragm capacitive sensor and Pirani sensor	crossover range
5×10⁻⁵ … 1 mbar	Pirani sensor	proportional to pressure ⁷⁾

4.3 Switching Functions SP1, SP2

The two switching functions can be set to any pressure within the measurement range of the gauge. A solid state relay is provided for each switching function.

⁷⁾ The pressure reading applies to dry air, O₂, CO and N₂. For other gases, it has to be converted (calibration factors (→
^B 24).

The current threshold setting

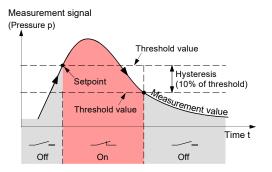

- · can be read / written via the diagnostic port
- is output at the measurement signal output instead of the pressure signal, can be measured with a voltmeter, and is displayed on the LCD display after the <SP1> or <SP2> button is pressed
- can be read / written via the DeviceNet, Profibus, EtherCAT, Profinet and RS485 interface.

Switching characteristics and hysteresis

The switching characteristics and the hysteresis of each set point can be programmed ($\rightarrow \mathbb{B}$ 48).

Low Trip Point (default)

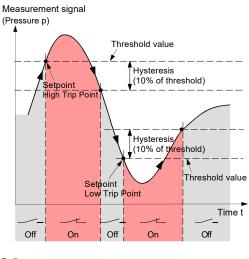
If the pressure in the vacuum system is lower than the setpoint, the corresponding LED (<SP1> or <SP2>) is lit solid and the corresponding relay is closed.



The setpoints SP1 and SP2 are factory set to the lower measurement range limit and therefore do not switch.

High Trip Point

If the pressure in the vacuum system is higher than the setpoint, the corresponding LED (<SP1> or <SP2>) is lit solid and the corresponding relay is closed.



tina56e1-i (2023-01)

High & Low Trip Point

Both a High Trip Point and a Low Trip Point are assigned to each setpoint. If the pressure in the vacuum system is higher than the defined High Trip Point threshold, the corresponding LED (<SP1> or <SP2>) is lit and the corresponding relay is closed. If the pressure in the vacuum system is lower than the defined Low Trip Point threshold, the corresponding LED (<SP1> or <SP2>) is lit and the corresponding relay is closed.

P

The setpoints can only be programmed via

- the diagnostic port (→ □ [4])
- the DeviceNet, Profibus, EtherCAT, Profinet and RS485 interface (→ □ [4], [5], [6], [7], [8], [9]).

Adjusting the Setpoints SP1, SP2 4.3.1

The switching characteristics and the hysteresis can only be programmed via

- the diagnostic port ($\rightarrow \square$ [4])
- the DeviceNet. Profibus. EtherCAT. Profinet and RS485 interface ($\rightarrow \square$ [4], [5], [6], [7], [8], [9]).

The thresholds of the setpoints can be adjusted via

- the buttons on the gauge
- the diagnostic port ($\rightarrow \square$ [4])
- the DeviceNet, Profibus, EtherCAT, Profinet and RS485 interface ($\rightarrow \square$ [4], [5], [6], [7], [8], [9]).

PP-

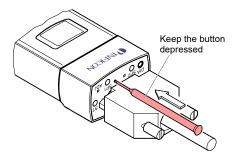
If both a High Trip Point and a Low Trip Point are assigned to a setpoint, Low Trip Point only can be adjusted via the corresponding button on the gauge.

٨		
Ŀ	Ν.	

DANGER

Malfunction

If processes are controlled via the signal output, keep in mind that by pushing an <SP> button the measurement signal is suppressed and the corresponding threshold value is output instead. This can cause malfunctions.


Push the <SP> button only if you are sure that no malfunction will cause.

Adjusting setpoint SP1 with button on the gauge

Push the <SP1> button with a pin (max. ø1.1 mm) and keep it depressed. The gauge changes to the switching function mode and outputs the current threshold value at the measurement value output or on the LCD for about 5 s and the corresponding <S> on the display blinks.

The threshold setting is increased towards the upper limit until the button is released or the limit is reached.

2 Push the <SP1> button again:

Fine adjustment within 01 s:	the threshold value changes by one unit
Change of direction within 2 3 s	the threshold adjustment changes its direction

The <SP1> button is released for more than 5 s: the threshold value is saved and the gauge returns to the measurement mode.

E CE

The factory setting of the upper threshold is 10% above the Low Trip Point and 10% below the High Trip Point (hysteresis).

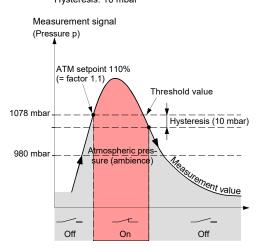
If after programming of the hysteresis the corresponding button <SP1> or <SP2> is pushed, the factory setting of the corresponding hysteresis (10%) is reactivated.

Programming setpoint SP1

Programmable parameters: $(\rightarrow \square [4], [5], [6], [7], [8], [9])$	Low Trip Point Low Trip Enable Low Trip Point Hysteresis
	High Trip Point High Trip Enable High Trip Point Hysteresis Setpoint Mode

Adjusting setpoint SP2

The adjustment procedure is the same as for setpoint SP1.



4.4 ATM Setpoint

The setpoints SP1 and SP2 of gauges with separate atmospheric pressure sensor ⁸⁾ can be programmed to atmospheric pressure setpoint (ATM setpoint) via the diagnostic port or serial interface.

The ATM setpoint is defined as a factor of the current atmospheric pressure and can be set to any pressure within the measurement range of the gauge. The relay switches when the pressure in the vacuum system has reached the defined value.

Example: ATM setpoint: 110% of the atmospheric pressure (= factor 1.1) Switching characteristic: High Trip Point Hysteresis: 10 mbar

⁸⁾ The atmospheric pressure sensor measures the atmospheric pressure (pressure outside the vacuum system and can be calibrated against the diaphragm capacitive sensor in the gauge (→
^B 59).

The current ATM threshold setting

- · can be read / written via the diagnostic port
- is output at the measurement signal output instead of the pressure signal, can be measured with a voltmeter, and is displayed on the LCD display after the <SP1> or <SP2> button is pressed
- can be read / written via the DeviceNet, Profibus and RS485 interface.

OP) DANGER

Malfunction

If processes are controlled via the signal output, keep in mind that by pushing the <SP> button the measurement signal is suppressed and the corresponding threshold value is output instead. This can cause malfunctions.

Push the <SP> button only if you are sure that no malfunction will cause.

Programming ATM setpoint


Low Trip Enable Low Trip Point Hysteresis
High Trip Enable High Trip Point Hysteresis Setpoint Mode
High Trip Po

Switching characteristics of the setpoints $\rightarrow \mathbb{B}$ 45. Diagnostic port $\rightarrow \mathbb{Q}$ [4].

4.5 Diagnostic Port (RS232C Interface)

The diagnostic port <DIA> permits to output the pressure reading and all status information and to enter all settings at the same time ($\rightarrow \square$ [4]).

4.6 DeviceNet Operation

Caution
Data transmission errors The attempt to operate the DeviceNet gauge with the RS232C interface causes data transmission errors. This DeviceNet gauge must not be operated with the RS232C interface

Before the gauge is put into operation, it has to be configured for the DeviceNet. A configuration tool and the device specific EDS file (Electronic Data Sheet) in integer or real format are required for this purpose. This software can be downloaded from our website (www.inficon.com).

	Product	
Product	code	EDS file
PCG55x without ATM sensor	19	PCGX-PC19 Int.eds
FCG55X WILLIOUL AT M SELISO		PCGX-PC19 Real.eds
PCG55x with ATM sensor	20	PCGX-PC20 Int.eds
FCG55X WILL AT M Sellson		PCGX-PC20 Real.eds

Node Address Setting (default 63dec)

Set the node address (0 ... 63_{dec}) via the <ADDRESS>, <MSD>, and <LSD> switches (default 63_{dec}). The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a setting higher than 63 is made, the previous node address setting remains valid.

If the <MSD> switch is in the <P> position, the node address is programmable via the DeviceNet ($\rightarrow \square$ [5]).

Example: Node address = 63:

Data Rate Setting

By means of the <RATE> switch, the data rate can be set to 125 (<1>), 250 (<2>) or 500 kBaud (<5>) (default 500 kBaud).

If the switch is in the <P> position, the data rate is programmable via the DeviceNet ($\rightarrow \square$ [5]).

RATE

Example: Data rate = 250 kBaud:

Transmitting measurement values

Depending on the Fieldbus standard used, the gauge can only transmit measurement values when it is authorized by the master.

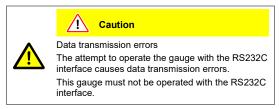
When the gauge is put into operation, it is in the IDLE status (provided there is no error) and the value defined in the Safe State is transmitted instead of the measurement value.

Measurement values are transmitted in the EXECUTING status. For the gauge to change from the IDLE to the EXECUTING status, a start instruction must be executed or the I/O-Poll mode must be started in the IDLE status.

Status LED

Two LEDs on the gauge inform on the gauge status and the current DeviceNet status.

<STATUS MOD> (gauge status):


LED	Meaning
off	No supply
blinking green-red	Selftest
lit solid green	Normal operation
lit solid red	Non recoverable error
blinking red	Recoverable error (e.g. missing DeviceNet power supply)

<STATUS NET> (network status):

LED	Meaning
off	Gauge not online:
	 Selftest not yet concluded
	• No supply, \rightarrow "STATUS MOD"
blinking green	Gauge online but no communication:
	 Selftest concluded but no communica- tion to other nodes established
	Gauge not assigned to any master
lit solid green	Gauge online; necessary connections established
blinking red	One or several input / output connections in "time out" status
lit solid red	Communication error. The gauge has de- tected an error that impedes communica- tion via the network (e.g. two identical node addresses (MAC IC) or "Bus-off")

4.7 **Profibus Operation**

For operating the gauge via Profibus, prior installation of the device specific GSD file is required on the bus master side. This file can be downloaded from our website (www.inficon.com).

Node Address Setting (default 01hex)

For unambiguous identification of the gauge in a Profibus environment, a node address is required.

Node address 0 ... 125dec

The node address is set in hexadecimal form (00 ... 7D_{hex}) via the <MSD> and <LSD> switches. It can not be defined via Profibus.

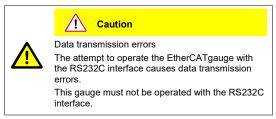
Example: Node address = 7Dhex:

MSD

Node address >7D_{hex} (>125_{dec})

The gauge starts with the node address 126dec. The address can now be set via Profibus ("Set slave address", $\rightarrow \square$ [6]). Additionally, via the attribute "NO ADD CHG" can be defined, if further changes of the node address are permissible.

The values of the nude address and the attribute are stored non-volatile. To change these stored values, start the gauge with a node address <126 $_{\rm dec}$. The stored values of the nude address and the attribute are deleted.


Transmitting measurement values

Depending on the Fieldbus standard used, the gauge can only transmit measurement values when it is authorized by the master.

When the gauge is put into operation, it is in the IDLE status (provided there is no error) and the value defined in the Safe State is transmitted instead of the measurement value.

Measurement values are transmitted in the EXECUTING status. For the gauge to change from the IDLE to the EXECUTING status, a start instruction must be executed or the cyclic data exchange must be started in the IDLE status.

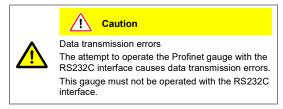
4.8 EtherCAT Operation

For operating the gauge via EtherCAT, prior installation of the device specific ESI file is required on the bus master side. This file can be downloaded from our website (www.inficon.com).

Explicit Device Address Setting (default 00hex)

During device initialization, the device address switches are read by the device firmware. This device address is supported to the master as Explicit Device Identification.

The explicit device address is set in hexadecimal form (00 ... FFF_{hex}) via the <x100>, <x10> and <x1> switches.


Example: Device address = 0xDDD (dec 3549): 0x100 * 0xD (dec 3328) + 0x10 * 0xD (dec 208) + 0x1 * 0xD (dec 13)

Status LED

LEDs on the gauge inform on the gauge status and the current EtherCAT status ($\rightarrow \square$ [7], [8]).

4.9 Profinet Operation

For operating the gauge via Profinet, prior installation of the device specific GSDML file is required on the bus master side. This file can be downloaded from our website (www.inficon.com).

Status LED

LEDs on the gauge inform on the gauge status and the current Profinet status ($\rightarrow \square$ [9]).

Device name

In order to communicate with a Profinet device, the device must first be assigned a name.

Deinstallation

WARNING Fragile components The ceramic sensor may be damaged by impacts. Do not drop the product and prevent shocks and impacts.
STOP DANGER Contaminated parts Contaminated parts can be detrimental to health and environment. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

5

Caution

Vacuum component

Dirt and damages impair the function of the vacuum component.

When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Dirt sensitive area

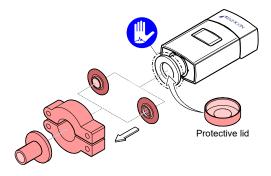
Caution

Touching the product or parts thereof with bare hands increases the desorption rate.

Always wear clean, lint-free gloves and use clean tools when working in this area.

• Vent the vacuum system.

Put the gauge out of operation.



Untighten the fastening screw(s) and disconnect the sensor cable

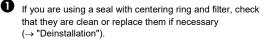
Remove gauge from the vacuum system and install the protective lid.

NFICON

6 Maintenance, Repair

Gauge failures due to contamination and wear and tear, as well as expendable parts (e.g. filament), are not covered by the warranty.

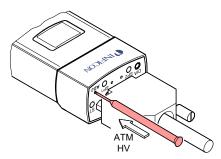
INFICON assumes no liability and the warranty becomes null and void if any repair work is carried out by the end-user or third parties.


6.1 Adjusting the Gauge

The gauge is factory calibrated. Due to long time operation or contamination, a zero drift could occur. Periodically check the zero and adjust it if necessary. In addition, we recommend to adjust the zero and ATM after each reinstallation.

For adjusting the zero, operate the gauge under the same constant ambient conditions and in the same mounting orientation as normally.

The gauge is adjusted to default values. However, it can also be adjusted to other pressure values, if the exact pressure value is known (reference measurement).



2 Put the gauge into operation and operate it at atmospheric pressure for at least 10 minutes.

Press the <ADJ> button with a pin (max. ø1.1 mm) and the ATM adjustment is carried out: The Pirani sensor is adjusted to 1000 mbar by default.

• Evacuate the vacuum system to $p << 10^{-5}$ mbar and wait at least 2 minutes.

9 Press the <ADJ> button with a pin and the HV adjustment is carried out: The gauge is adjusted to 5×10⁻⁵ mbar (default).

HV adjustment to another pressure $\rightarrow \Box [4]$.

If the pressure value 4.99×10⁻⁵ mbar is output at the measurement value output or on the LCD display, the adjustment has been successful. Otherwise, repeat the adjustment procedure.

6.2 Adjusting the Atmospheric Pressure Sensor

The ambient pressure of the gauge is measured by a separate atmospheric pressure sensor built into the electronics unit of the gauge.

The atmospheric pressure sensor can be calibrated against the diaphragm capacitive sensor in the gauge. The gauge electronics compares the output signals of the two sensors and carries out the necessary adjustments to the atmospheric pressure sensor signal.

The adjustment of the atmospheric pressure sensor can only be carried out via

- the diagnostic port (→ □ [4])
- the DeviceNet, Profibus, EtherCAT, Profinet and RS485 interface (→ □ [4], [5], [6], [7], [8], [9]).

6.3 Troubleshooting

In the event of a fault or a complete failure of the output signal, the gauge can easily be checked.

Required tools / material

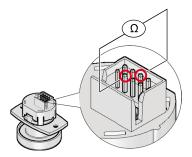
- Voltmeter / ohmmeter
- Allen wrench, AF 2
- Spare sensor (if the sensor is faulty)

Trouble shooting gauge

The output signal is available at the sensor cable connector.

In case of an error, it may be helpful to just turn off the mains supply and turn it on again after 5 s.

Problem	Possible cause	Correction
Output signal per- manently ≈0V <st> lit solid red</st>	Sensor cable defective or not correctly connected	Check the sensor cable
	No supply voltage	Turn on the power supply
	Error	Remedy the error
	Gauge in an undefined status	Turn the gauge off and on again after 5 s (reset)
FAIL PIR1 <st> lit solid red</st>	Pirani sensor defective	Replace the sensor $(\rightarrow B 67)$
	Electronics unit not correctly mounted on sensor	Check the connections (electronics – sensor)
FAIL CAP1 <st> lit solid red</st>	Diaphragm sensor defective	Replace the sensor $(\rightarrow \cong 67)$
	Electronics unit not mounted correctly on sensor	Check the connections (electronics – sensor)
FAIL ATM1 <st> lit solid red</st>	Atmospheric pressure sensor defective	Replace the gauge
FAIL EEPROM <st> is blinking red</st>	EEPROM error	Turn the gauge off and on again after 5 s (reset)
		Replace the gauge
FAIL SENSOR <st> lit solid red</st>	Electronics unit not compatible with the sensor	Replace the sensor $(\rightarrow B 67)$
		Replace the gauge



Troubleshooting sensor (Pirani filament)

If the cause of a fault is suspected to be in the sensor, the following checks can be made with an ohmmeter.

Separate the sensor from the electronics unit ($\rightarrow \blacksquare 67$).

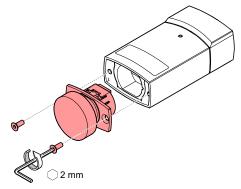
Using an ohmmeter, make the following measurements on the contact pins.

Sensor	Ŕ	R3	Possible cause
PCG550 (W)	40 ± 1 [Ω]	≫40 Ω	Contamination
PCG554 (W)		≪40 Ω	Contamination
		ø	Filament broken
PCG552 (Ni)	35 ± 1 [Ω]	≫35 Ω	Contamination
		≪35 Ω	Contamination
		×	Filament broken

i

Correction

All of the above faults can only be remedied by replacing the sensor (\rightarrow \cong 67).


6.4 **Replacing the Sensor**

In case of severe contamination or a malfunction, the sensor can be replaced.

Precondition

Gauge deinstalled ($\rightarrow \blacksquare 60$).

1 Unscrew the hexagon socket screws and remove the sensor without twisting it.

Place the new sensor without twisting it and lock it with the screws.

Returning the Product

Forwarding contaminated products

Contaminated products (e.g. radioactive, toxic, caustic or microbiological hazard) can be detrimental to health and environment.

Products returned to INFICON should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination ⁷).

*) Form under www.inficon.com

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer. Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.

7

Disposal

8

IOP DANGER

Contaminated parts

Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Substances detrimental to the environment

Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.

Dispose of such substances in accordance with the relevant local regulations.

Separating the components

After disassembling the product, separate its components according to the following criteria:

Contaminated components

Contaminated components (radioactive, toxic, caustic or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.

· Other components

Such components must be separated according to their materials and recycled.

Accessories

9

	Ordering No.
Centering ring with fine filter DN 16 ISO-KF	211-097
Communication adapter (2 m) 9)	303-333

⁹⁾ The diagnostic software (Windows NT, XP) can be downloaded from our website.

10 Spare Parts

When ordering spare parts, always indicate:

- all information on the product nameplate
- · description and ordering number

3PC1-0x1-xxxx DN 16 ISO-KF 357-925	5
UN 16 ISU-KF 357-925)
3PC6-0x1-xxxx	
3PC1-0x2-xxxx DN 16 ISO KE leng tube 257 020	357-926
357-926	
3PC1-0x4-xxxx DN 16 CF-F 357-927	357-927
3PC6-0x4-xxxx	
<u>3PC1-0x5-xxxx</u> DN 16 CE B land tube	357-928
357-928 3PC6-0x5-xxxx	
3PC1-0x6-xxxx DN 25 ISO-KF 357-925	357-929
3PC6-0x6-xxxx	
3PC1-0xD-xxxx 3PC6-0xD-xxxx 3PC6-0xD-xxxx	357-932
O 3PC6-0xD-xxxx 4 VCR lemale 357-952	
3PC1-0xE-xxxx	357-931
3PC6-0xE-xxxx 0 307-93	
3PC1-0xF-xxxx 1/8" NPT 357-930	357-930
3PC6-0xF-xxxx 357-950	
3PC1-0xK-xxxx 29×29 mm 357-934	357-934
3PC6-0xK-xxxx 357-952	
3PC1-0xM-xxxx 4 VCR 90° female 357-935	357-935
3PC6-0xM-xxxx 4 VCR 90° female 357-953	
3PC1-0xN-xxxx 7/16-20 UNE male 357-93	357-933
3PC6-0xN-xxxx 3PC6-0xN-xxxx	

Sensor for gauge with nickel (Ni) filament		Ordering No.	
PCG552	3PC2-0x1-xxxx	DN 16 ISO-KF	357-936
	3PC7-0x1-xxxx	DIN 10 ISU-KF	
	3PC2-0x2-xxxx		357-937
	3PC7-0x2-xxxx	DN 16 ISO-KF, long tube	
	3PC2-0x4-xxxx	DN 49 05 5	357-938
	3PC7-0x4-xxxx	DN 16 CF-F	
	3PC2-0x5-xxxx	DN 16 CE B lang tube	357-939
	3PC7-0x5-xxxx	DN 16 CF-R, long tube	
	3PC2-0x6-xxxx	DN 25 ISO-KF	357-940
	3PC7-0x6-xxxx		
	3PC2-0xD-xxxx	4 VCR female	357-943
	3PC7-0xD-xxxx		
	3PC2-0xE-xxxx	8 VCR female	357-942
	3PC7-0xE-xxxx		
	3PC2-0xF-xxxx	1/8" NPT	357-941
	3PC7-0xF-xxxx	1/6 NP1	
	3PC2-0xK-xxxx	0000	357-945
	3PC7-0xK-xxxx	29×29 mm	
	3PC2-0xM-xxxx	4 VCR 90° female	357-946
	3PC7-0xM-xxxx		
	3PC2-0xN-xxxx	7/10.001/0/5	257.044
	3PC7-0xN-xxxx	7/16-20 UNF male	357-944

NFICON

Sensor for gauge with Al_2O_3 coated filament		Ordering No.	
4	3PC3-0x1-xxxx	DN 16 ISO-KF	357-947
	3PC8-0x1-xxxx	DIN 10 ISU-KF	
	3PC3-0x2-xxxx		357-948
	3PC8-0x2-xxxx	DN 16 ISO-KF, long tube	
	3PC3-0x4-xxxx		357-949
	3PC8-0x4-xxxx	DN 16 CF-F	
	3PC3-0x5-xxxx	DN 16 CE Blans tube	357-950
	3PC8-0x5-xxxx	DN 16 CF-R long tube	
	3PC3-0x6-xxxx	DN 25 ISO-KF	357-951
	3PC8-0x6-xxxx		
355	3PC3-0xD-xxxx	4 VCR female	357-954
PCG554	3PC8-0xD-xxxx		
	3PC3-0xE-xxxx	8 VCR female	357-953
	3PC8-0xE-xxxx		
	3PC3-0xF-xxxx	1/8" NPT	357-952
	3PC8-0xF-xxxx		
	3PC3-0xK-xxxx	29×29 mm	357-956
	3PC8-0xK-xxxx	29×29 mm	
	3PC3-0xM-xxxx	4 VCR 90° female	357-957
	3PC8-0xM-xxxx		
	3PC3-0xN-xxxx	7/16-20 UNF male	357-955
	3PC8-0xN-xxxx		

Further Information

₪ [1]	www.inficon.com Operating Manual Single-Channel Controller VGC401 tinb01d1 German tinb01e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
□ [2]	www.inficon.com Operating Manual Two and Three Channel Measurement and Control Unit VGC402, VGC403 tinb07d1 German tinb07e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
□ [3]	www.inficon.com Operating Manual One, Two and Three Channel Measurement and Control Unit VGC501, VGC502, VGC503 tina96d1 German tina96e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
□ [4]	www.inficon.com Communication Protocol Serial Interface RS232C, RS485C PCG55x, PSG55x tira59d1 German tira59e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
🕮 [5]	www.inficon.com Communication Protocol DeviceNet™ PCG55x, PSG55x tira58e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
🕮 [6]	www.inficon.com Communication Protocol Profibus PCG55x, PSG55x

INFICON AG, LI-9496 Balzers, Liechtenstein

tira56e1 English

- [7] www.inficon.com Communication Protocol EtherCAT[®] PCG55x, PSG55x (ETG.5003.2080 S (R) V1.0.0) tira85e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
- [8] www.inficon.com Communication Protocol EtherCAT® PCG55x, PSG55x (ETG.5003.2080 S (R) V1.3.0) tirb51e1 English INFICON AG, LI–9496 Balzers, Liechtenstein
- [9] www.inficon.com
 Communication Protocol
 Profinet PCG55x, PSG55x
 tirb72e1 Englisch
 INFICON AG, LI–9496 Balzers, Liechtenstein
- □ [10] Common Industrial Protocol (CIP™) Ed. 3.5 and DeviceNet[™] Adaption of CIP Ed. 1.6 (Open DeviceNet Vendor Association)
- □ [11] www.odva.org Open DeviceNet Vendor Association, Inc. DeviceNet™ Specifications
- I2] IEC 61158 Type 3 elements: Industrial communication networks – Fieldbus specifications
 IEC 61784: Industrial communication networks – Fieldbus profiles
- [13] www.profibus.com Profibus user organization
- □ [14] ETG.5003.1 S (R) V1.0.0: Semiconductor Device profile - Part 1: Common Device Profile (CDP)
- □ [15] ETG.5003.2080 S (R) V1.0.0: Semiconductor Device profile – Part 2080: Specific Device Profile (SDP): Vacuum Pressure Gauge
- □ [16] ETG.5003.1 S (R) V1.1.0: Semiconductor Device profile - Part 1: Common Device Profile (CDP)
- □ [17] ETG.5003.2080 S (R) V1.3.0: Semiconductor Device profile – Part 2080: Specific Device Profile (SDP): Vacuum Pressure Gauge

NFICON

ETL Certification

ETL LISTED

The products PCG550, PCG552 and PCG554

- conform to the UL Standard UL 61010-1
- are certified to the CAN/CSA Standard CSA C22.2 No. 61010-1-12

EU Declaration of Conformity

We, INFICON, hereby declare that the equipment mentioned below comply with the provisions of the following directives:

- 2014/30/EU, OJ L 96/79, 29.3.2014 (EMC Directive; Directive relating to electromagnetic compatibility)
- 2011/65/EU, OJ L 174/88, 1.7.2011 (RoHS Directive; Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment)

Pirani Capacitance Diaphragm Gauge PCG550, PCG552, PCG554

Standards

Harmonized and international / national standards and specifications:

- EN 61000-6-2:2005 (EMC: generic immunity standard)
- EN 61000-6-3:2007 + A1:2011 (EMC: generic emission standard)
- EN 61010-1:2010 + A1:2019 + A1:2019/AC2019 (Safety requirements for electrical equipment for measurement, control and laboratory use)
- EN 61326-1:2013; Group 1, Class B (EMC requirements for electrical equipment for measurement, control and laboratory use)

Manufacturer / Signatures

INFICON AG, Alte Landstraße 6, LI-9496 Balzers

18 January 2023

18 January 2023

Dr. Christian Riesch Head of Development

llow Hen

Marco Kern Product Manager

UKCA Declaration of Conformity

We, INFICON, hereby declare that the equipment mentioned below comply with the provisions of the following regulations:

- S.I. 2016/1091, 11.2016 (EMC Regulation; Regulation relating to electromagnetic compatibility)
- 2012/3032, 12.2012 (RoHS Regulation; Regulation on the restriction of the use of certain hazardous substances in electrical and electronic equipment)

Pirani Capacitance Diaphragm Gauge PCG550, PCG552, PCG554

Standards

Harmonized and international / national standards and specifications:

- EN 61000-6-2:2005 (EMC: generic immunity standard)
- EN 61000-6-3:2007 + A1:2011 (EMC: generic emission standard)
- EN 61010-1:2010 + A1:2019 + A1:2019/AC2019 (Safety requirements for electrical equipment for measurement, control and laboratory use)
- EN 61326-1:2013; Group 1, Class B (EMC requirements for electrical equipment for measurement, control and laboratory use)

Manufacturer / Signatures

INFICON AG, Alte Landstraße 6, LI-9496 Balzers

9 January 2023

9 January 2023

Dr. Christian Riesch Head of Development

llaw Hen

Marco Kern Product Manager

Notes

NFICON

LI–9496 Balzers Liechtenstein Tel +423 / 388 3111 Fax +423 / 388 3700 reachus@inficon.com

www.inficon.com